ON-DEMAND
Listen to our leaders as they discuss the hottest trends in AI for 2022
WATCH NOWThe State of AI and Machine Learning Report is an annual exploration of the strategies implemented by companies large and small, across industries and continents as they advance in their AI maturity. The 8th edition of this report highlights the prevailing approaches to data management and security, responsible AI, and the significant role played by external data providers in advancing progress. As companies are advancing in AI maturity, we see an even bigger focus on ethics and data diversity.
42% of technologists say the data sourcing stage of the AI lifecycle is very challenging. However, business leaders were less likely to report data sourcing as very challenging (24%).
Find Each Stage of the Data for the AI Lifecycle Very Challenging
More than half of respondents say data accuracy is critical to the success of AI but only 6% reported achieving data accuracy higher than 90%.
There’s a strong consensus around the importance of human-in-the-loop machine learning with 81% stating it's very or extremely important and 97% reporting human-in-the-loop evaluation is important for accurate model performance.
Machine Learning Model Update Frequency (US-based)
^Only applicable for ‘21/’22
Technologists are split on whether their organization is ahead or even with others in their industry. Respondents in the US are more likely than their European counterparts to say their organizations are ahead of others in their industry at adopting AI.
When It Comes to AI Adoption Your Organization Is:
One of the greatest challenges in our industry is the perception that artificial intelligence poses ethical risks. 93% of respondents agree that responsible AI is a foundation for all AI projects within their organization. As diversity and inclusion become more prominent parts of mainstream AI and ML conversation, ethics at all phases of the AI lifecycle is more important than ever.